不管写什么主题的教案,我们都要围绕教学目标来思考,教案只我们开展教学工作之前必须准备好的书面文件,会写范文网小编今天就为您带来了人教版数学六年级下册教案优质5篇,相信一定会对你有所帮助。
人教版数学六年级下册教案篇1
第1课时
圆柱的认识
教学内容
人教版六年级下册教材第17页圆柱的认识、第18页例1和第19页例2。
内容简析
圆柱的认识:通过观察物体的形状,初步认识圆柱。
例1:通过观察圆柱,认识圆柱的侧面、底面和高。
例2:通过观察图形,掌握圆柱的侧面展开图。
教学目标
1.认识圆柱的侧面、底面和高;认识圆柱的侧面展开图,理解圆柱侧面展开图与圆柱的关系。
2.通过观察、发现、交流,让学生自主探究,掌握学习方法。
3.培养学生观察、比较和判断的能力,以及发现问题、分析问题和解决问题的能力。
教学重难点
重点:使学生掌握圆柱的基本特征,理解圆柱侧面展开图与圆柱的'关系。
难点:圆柱侧面展开图与圆柱的关系,建立圆柱的空间观念。
教法与学法
1.在教法上,应加强直观演示和操作,利用多媒体课件从实物中抽象出圆柱的图形,帮助学生建立圆柱的表象,再让学生通过观察和操作,发现并总结出圆柱的特征。
2.在学法上,学生把观察和动手操作相结合,通过摸一摸、量一量、画一画等实践操作活动认识圆柱的特征。本节课也应以学生自主学习为主,加强小组合作与交流。
承前启后链
教学过程
一、情景创设,导入课题
实物展示法:
教师拿出一个做好的圆柱模型展示给学生,让学生摸一摸、看一看,初步感知圆柱;紧接着让学生观察这个圆柱的特征,观察圆柱的组成。(学生观察并独立思考)
学生1:圆柱由三部分组成:两个圆和一个曲面。
学生2:两个圆的面积相等。
学生3:……
教师表扬并鼓励学生的回答。【品析:用观察实物的方式导入,让学生看到了真实的物体,使学生对圆柱的印象更加深刻,同时用动作摸一摸更能吸引学生的学习兴趣。】
课件展示法:
1.课件出示“旋转门”的画面,引导联想:你看到了什么?想到了什么?(圆柱的形成)
我看到了旋转门,想到了它转起来会形成一个圆柱。
2.课件出示:比萨斜塔、客家围屋、立柱、蜡烛、水杯等。课件抽出圆柱的几何模型。
今天我们一起来研究圆柱。(板书课题)【品析:课件展示的效果是使图形更加形象具体,学生一目了然,对于图形的认识和理解更加准确和深刻,有助于学生对于圆柱的学习和研究。】
动手操作法:
让学生拿出所带的硬纸板、直尺、剪刀、圆规等学具,小组合作,教师引导动手制作圆柱的模型。
小组展示制作成果,教师给予评价。【品析:亲自动手操作制作圆柱模型不仅使学生更好地认识圆柱,而且让学生有一种喜悦的成就感。同时,对下面观察总结圆柱的组成和特征打下坚实的基础。】
二、师生合作,探究新知
◎教学例1
(1)整体感知圆柱
①谈谈圆柱,大家知道什么是圆柱吗?请同学说说你理解的圆柱。
②找找圆柱,请同学找出生活中圆柱形状的物体。
引导学生阅读观察教材第17页几个圆柱物体的图形,认识圆柱。
(2)教学例1:
出示教材第18页例1:观察一个圆柱形的物体,看一看它是由哪几个部分组成的,有什么特征。
①认识圆柱的面。
师:请同学摸摸自己手中圆柱的表面,说说你发现了什么。
师:指导看书,再次观察例1中的图形,引导归纳。(上、下两个面叫作底面,它们是完全相同的两个圆;圆柱的曲面叫侧面。)
②认识圆柱的高
引导学生观察例1中的圆柱,根据图形上的提示认识圆柱的高,再根据例1中的高找到自己手中圆柱的高。结合教材回答什么叫圆柱的高。(板书:圆柱两个底面之间的距离叫作高)
讨论交流:圆柱的高的特点。
归纳小结并板书:圆柱的高有无数条,高的长度都相等。
总结:圆柱是由3个面围成的。圆柱的上、下两个面叫作底面。圆柱周围的面(上、下底面除外)叫作侧面。圆柱的两个底面之间的距离叫作高。
?品析:此教学环节先运用提问交流的方式引出认识圆柱,再联系生活实物模型,通过让学生动手操作观察自己所制作的圆柱模型来认识圆柱的组成和特征,使学生记忆更加深刻。】
◎教学例2:圆柱的侧面展??
(1)动手操作:请同学分小组拿出有商标纸的圆柱形实物,把商标纸剪开,再打开,观察商标纸的形状。
反馈后讨论:展开后得到长方形和正方形的是怎样剪的?展开后得到平行四边形的是怎样剪的?
(2)操作探究:展开的长方形的长和宽与圆柱的关系。
师生一起把展开的长方形还原成圆柱的侧面,再展开,在重复操作中观察。
归纳:这个长方形的长就是圆柱底面的周长,宽就是圆柱的高。
(3)延伸发现:展开的平行四边形的底和高及正方形的边长与圆柱的关系。
(4)引导学生自主阅读并观察教材第19页例2。
总结:长方形的长就是圆柱底面的周长,宽就是圆柱的高。
?品析:此环节在探索学习的过程中,教师为学生创设动手实践的机会,给学生足够的时间进行操作与思考,让学生获得丰富的活动体验,让学生动手操作推导出圆柱侧面展开后是一个长方形,长方形的长等于底面周长,宽等于圆柱的高。通过这样的活动体验,让学生经历学习数学的过程。】
三、反馈质疑,学有所得
在认识了圆柱,学习完例1、例2的基础上,让学生及时消化吸收,教师提出质疑,师生共同系统整理。
质疑一:圆柱是由几部分组成的?圆柱有什么特征?
师生共同总结:圆柱是由3个面围成的。圆柱的上、下两个面叫作底面。圆柱周围的面(上、下底面除外)叫作侧面。圆柱的两个底面之间的距离叫作高。
质疑二:圆柱的侧面展开后是什么形状?长方形的长、宽与圆柱有什么关系?
师生共同总结:圆柱侧面展开后得到一个长方形。长方形的长就是圆柱底面的周长,宽就是圆柱的高。
四、课末小结,融会贯通
同学们,今天我们认识了圆柱,学习了圆柱的基本特征和圆柱的侧面展开图,你能说说你的收获吗?找两个学生畅谈本课时的收获,教师对其进行补充完成课堂的小结。
师生共同总结:
1.圆柱的组成及特点:圆柱是由3个面组成的。圆柱的上、下两个面叫作底面;圆柱周围的面(上、下面除外)叫作侧面;圆柱的两个底面之间的距离叫作高。圆柱的底面都是圆,并且大小一样。圆柱的侧面是一个曲面。
2. 圆柱的侧面展开图:圆柱的侧面沿高展开是一个长方形,长方形的长等于圆柱底面的周长,宽等于圆柱的高。衔接下一节课的学习内容,给大家留一个思考的话题:
什么叫作圆柱的表面积?包括哪几个面?
五、教海拾遗,反思提升
回味课堂,发现亮点之处:两次质疑的讨论使学生的学习进入了二次消化吸收的过程,这次内化把圆柱的基本特征和圆柱的侧面展开图的有关知识真正掌握了。
反思过程,有待改进之处:在教学中,应多给予学生动手实践的机会,给学生足够的时间进行操作和思考的同时,教师应进行相应的提问,这样学生学习的印象才能更深刻,学习的知识才会更扎实。人教版六年级下册数学教案 篇5教学内容:
例5体现了找规律对解决问题的重要性。这里的规律的一般化表述是:以平面上几个点为端点,可以连多少条线段。这种以几何形态显现的问题,便于学生动手操作,通过画图,由简到繁,发现规律。解决这类问题的常用策略是,由最简单的情况入手,找出规律,以简驭繁。这也是数学问题解决比较常用的策略之一。
例6以选送节目为题材,讨论怎样分两步找出组合数,再求选送方案的总数。这里渗透了作为排列组合基础之一的乘法原理。
例7是一个比较复杂的逻辑推理问题,借助列表,则比较容易逐步缩小范围,找到答案。这里渗透了逻辑推理的常用方法排除法。
教学目标:
1.通过学生观察、探索,使学生掌握数线段的方法。
2.渗透化难为易的数学思想方法,能运用一定规律解决较复杂的数学问题。
3.培养学生归纳推理探索规律的能力。
重点难点:
引导学生发现规律,找到数线段的方法
教具学具:
多媒体课件
教学指导:
1.出示例5前,可以先让学生说说几年来每一学期的数学广角学了些什么。 探索例5时,应当先让学生理解问题。可以通过读题、说题意,使学生明白每两点之间都能连一条线段。然后让学生自己动手在纸上画画、试试,再来讨论有没有什么好方法
2.探究例6时,可以直接给出题目,由学生自己尝试,也可以将例题分解,让学生先回答
3.探究例7时,必须先让学生仔细读题,理解题意。
教学过程:
一、复习回顾,游戏设疑,激趣导入。
1.师:同学们,课前我们来做一个游戏吧,请你们拿出纸和笔在纸上任意点上8个点,并将它们每两点连成一条线,再数一数,看看连成了多少条线段。(课件出现下图,之后学生操作)
2.师:同学们,有结果了吗?(学生表示:太乱了,都数昏了)大家别着急,今天,我们就一起来用数学的思考方法去研究这个问题。(板书课题)
新知学习
二、逐层探究,发现规律。
1.从简到繁,动态演示,经历连线过程。
人教版数学六年级下册教案篇2
课题利率
教学内容教学内容:利率(课本第11页例4)
课型新课
教学目标
1、学生在调查实践中了解储蓄的意义、种类,理解什么是本金、利息。
2、能正确计算利息。
教学重点:利息的计算
教学难点:利息的计算。
教学手段课件。
教学方法联系生活,引导学习,总结提升;自主学习,小组讨论
教学过程
一,导入新课:
同学们,你们去过银行吗?你知道去银行人民常做什么吗?你知道我们周围有什么银行?你见过银行卡吗?
二、创设生活情境,了解储蓄的意义和种类
1、储蓄的意义
师:快要到年底了,许多同学的爸爸妈妈的单位里
会在年底的时候给员工发放奖金,你的爸爸妈妈拿到这笔钱以后是怎么处理的呢?
2、储蓄的种类。(学生汇报课前调查)
三、自学课本,理解本金“、”利息“、”利率“的含义
1、自学课本中的例子,理解”本金“、”利息“、”利率“的含义,然后四人小组互相举例,检查对”本金“、”利息“、”利率“的理解。
本金:存入银行的钱叫做本金。
利息:取款时银行多付的钱叫做利息。
利率:;利息与本金的百分比叫做利率。
2、师:根据国家经济的发展变化,银行存款的利率先让学生谈谈你所知道的储蓄有哪几种,并举例说明,然后教师作适当的补充。有时会有所调整,而且,根据存款是定期还是活期,定期时间的长短,利息也是不一样的。
3、利息计算
(1)利息计算公式
利息=本金×利率×时间
(2)例4:王奶奶要存5000元请你帮助王奶奶算一算存两年后可以取回多少钱?(整存整取两年的利率是3。75%)。
在弄清以上这些相关概念之后,学生尝试解答例题。
在学生独立审题解答的基础上订正。
方法一方法二
5000×3。75%×2=375(元)
5000×(1+3。75%×2)
5000+375=5375(元)=5000×1。075
=5375(元)
四、实践应用
第11页做一做
完成练习时看清题目认真审题,注意计算要准确。
五、课堂总结
学生谈谈学习本课有什么新的收获。
作业
第14页的第9题
板书设计
利率
本金:存入银行的钱叫做本金。
利息:取款时银行多付的钱叫做利息。
利率:;利息与本金的百分比叫做利率
利息计算公式
利息=本金×利率×时间
人教版数学六年级下册教案篇3
六年级下册数学负数知识点整理
一、负数的定义
1、以前所学的所有数(0除外)都是正数,也就是说正数前面的“+”是可以省略不写的!
2、负数的定义:在正数前面加上“-”就是负数。
3、负数前面必定有“-”如果前面不是“-”(可能没有符号或者是“+”)都是正数(0除外)。4、0既不属于正数,也不属于负数,它是正数和负数的分界。
二、负数的作用
1、负数是在人为规定正方向的前提下出现的。
2、负数常用来表示和正数意义相反的量。
3、在选择用正数还是负数表示时,首先看是否规定了正方向。
4、一般含有褒义的量用正数表示,含有贬义的量则用负数表示。
例:零上5°用+5℃表示;零下5°用-5℃表示。收入2000元用+2000元表示;支出500元用-500元表示。
三、常见负数的意义(1)地图上的负数:
中国地形图上,可以看到我国有一座世界最高峰—珠穆朗玛峰,图上标着8848,在西北部有一吐鲁番盆地,地图上标着-155米,你能说说8848米,-155米各表示什么吗?这两个高低是以谁为标准的?(2)收入与支出
收入:2600元,()教育支出:300元()娱乐支出:500元()。(3)电梯间的负数
-3层是什么意思?是以谁为标准的?
以学校为起点,往东走为正,往西走位负,小明从学校走了+50m,又走了-100m,这时小明离学校的距离是()。
食品包装上常注明:“净重500±5g,”表示食品的标准质量是(),实际没袋最多不多于(),最少不少于()。
四、负数的读法和写法
1、读法:在所读数的前面加上“负”
2、写法:在所写数的前面加上“-”
五、认识数轴
1、数轴的要素:正方向(箭头表示)、原点(0刻度)、单位长度(刻度)。正方向:根据题意要求确定正方向,一般以向上或向右为正方向。
原点:也就是数字0所在的位置,一般根据表示数字的分布情况来确定,如果需要表示的正负数差不多相等时原点在数轴中间;如果正数比负数多得多原点偏左;如果负数比正数多得多原点偏右。单位长度:由所要表示多的大小来决定刻度之间距离的大小,如果数字偏大刻度距离可以适当小一些,如果数字偏小刻度距离可以适当大一些。单位长度不一定每个刻度只能表示1。
2、用数轴表示数
在已给数轴上表示数:根据数字在对应的刻度上描点表示。
对于非整数的表示:将刻度进一步细分如,需要将0—1之间线段分为3等分则2等分处为该数。
对于负数的表示:负数都在0的左面,正数都在0的右面。例:+在3和4中间,而-在-3和-4中间。
3、根据数轴比较数的大小
所有的正数都大于负数;所有的负数都小于正数 0左边的数都是负数,0右边的数都是正数; 在数轴上越靠右边的数越大,越靠左边的数越小; 负数比较大小,不考虑负号,数字部分大的数反而小; 0大于所有的负数,小于所有的正数。负数
人教版数学六年级下册教案篇4
教学目标
1、使学生掌握圆柱体积公式,会用公式计算圆柱体积,能解决一些实际问题。
2、让学生经历观察、操作、讨论等数学活动过程,理解圆柱体积公式的推导过程,引导学生探讨问题,体验转化和极限的思想。
3、在图形的变换中,培养学生的迁移能力、逻辑思维能力,并进一步发展其空间观念,领悟学习数学的方法,激发学生兴趣,渗透事物是普遍联系的唯物辨证思想。
教学重点、难点
1、圆柱体积计算公式的推导过程并能正确应用。
2、借助教具演示,弄清圆柱与长方体的关系。
教具、学具准备
多媒体课件、长方体、圆柱形容器若干个;学生准备推导圆柱体积计算公式用学具。
教学设想
? 圆柱的体积 》是学生在有了圆柱、圆和长方体的相关的基础上进行教学的。在知识与技能上,通过对圆柱的具体研究,理解圆柱的体积公式的推导过程,会计算圆柱的体积,在方法的选择上,抓住新旧知识的联系,通过想象、课件演示、实践操作,从经历和体验中思考,培养学生科学的思维方法;贴近学生生活实际,创设情境,解决问题,体现数学知识“从生活中来到生活去”的理念,激发学生的学习兴趣和对科学知识的求知欲,使学生乐于探索,善于探索。
教学过程
一、创设情境,激疑引入
“水是生命之源!”节约用水是我们每个公民应尽的义务。前两天,老师家的水龙头出了问题,拧上阀门之后,还是不停的滴水,你们看,一刻钟就滴了这么多的水。
1、出示装了水的圆柱容器。
(1)启发思考:容器里面的水形成了什么形状?(圆柱)你能知道这些水的体积?
(2)讨论后汇报:
生1:用量筒或量杯直接量出它的体积;
生2:用秤称出水的重量,然后进一步知道体积;
生3:把它倒入长方体容器中,从里面量出长、宽和水面的高后再计算。
师:现在老师只有这些工具(圆柱形容器,长方形容器,半圆形容器和其他不规则容器),你怎么办?
生1:把水到入长方体容器中……
生2:我们学过了长方体的体积计算,只要量出长、宽、高就行
[设计意图:通过本环节,给学生创设一个生活中的情境,提出问题,学习身边的数学,激起学生的学习兴趣;根据需要渗透圆柱体(新问题)和长方体(已知)的知识联系为所学内容作了铺垫的准备]
2、创设问题情境。
师:(课件显示)如果要求某些建筑中圆柱形柱子的体积,或是求压路机圆柱形大前轮的体积,能用同学们想出来的办法吗?
[设计意图:进一步从实际需要提出问题,激发学生从问题中思考寻求一种更广泛的方法来解决圆柱体积的问题的欲望]
师:今天,就让我们来研究解决任意圆柱体积的方法。(板书课题:圆柱的体积)
二、经历体验,探究新知
1、回顾旧知,帮助迁移
(1)教师首先提出具体问题:圆柱体和我们以前学过的哪些几何图形有联系?
生1:圆柱的上下两个底面是圆形
生2:侧面展开是长方形……
生3:说明圆柱和我们学过的圆和长方形有联系
师:请同学们想想圆柱的体积与什么有关?
生1:可能与它的大小有关
生2:不是吧,应该与它的高有关
[设计意图:温故而知新,既复习了旧知识又引出了新知识,学生在不知不觉中就学到了新知。]
(2)请大家回忆一下:在学习圆的面积时,我们是怎样将圆转化成已学过的图形,来推导出圆面积公式的。
配合学生回答演示课件。
[设计意图:通过想象,进一步发展学生的空间观念,由“形”到“体”;同时使学生感悟圆柱的体积与它的底面积和高的联系,通过圆面积推导过程的再现,为实现经验和方法的迁移作铺垫]
2、小组合作,探究新知
(1)启发猜想:我们要解决圆柱的体积的问题,可以怎么办?(引导学生说出圆柱可能转化成我们学过的长方体。并通过讨论得出:反圆柱的底面积分成许多相等的扇形,然后反圆柱切开,再拼起来,就转化近似的长方体了。)
(2)学生以小组为单位操作体验。
把圆柱的底面积分成许多相等的扇形,然后把圆柱切开,再把它拼起来,就转化成近似的长方体了。使学生进一步明确分的份数越多,形体中的 越接近 ,也就越接近长方体。同时演示一组动画(将圆柱底面等分成32份、64等份、128等份……)
[设计意图:教师提出问题,学生带着问题大胆猜测、动手体验。这样学生在自主探索、体验、领悟的过程中成为了发现者和创造者。]
(3)学生小组汇报交流:
近似的长方体的体积等于圆柱的体积, 近似的长方体的底面积等于圆柱的底面积,近似的长方体的高就是圆柱的高。根据长方体的体积等于底面积乘高,得出圆柱的体积也等于底面积乘高。
教师根据学生汇报报,用教具进行演示。
(4)概括板书:根据圆柱与近似长方体的关系,推导公式:
长方体的体积 = 底面积 × 高
↓ ↓ ↓
圆柱的体积 = 底面积 × 高
用字母表示计算公式v= sh
设计意图:首先通过学生的联想建立圆柱体和长方体的联系,初步建立转化的雏形,然后再通过实践
人教版数学六年级下册教案篇5
设计说明
“反比例”是在学生学习了“比和比例”和“正比例”的基础上进行教学的。本着“学生是学习的主体”的理念,在本节课的教学中,最大限度地为学生提供了自主探究的机会。
1.借助定义、实例,渗透函数思想。
教学伊始,借助正比例的意义和生活实例,使学生进一步体会函数思想,充分理解成正比例关系的两种量的比值不变的特点,为学生探究成反比例关系的两种量之间的关系以及理解反比例的意义和特点奠定良好的基础。
2.借助具体情境,在观察、讨论中发现规律。
教学中,通过具体情境,引导学生在观察、讨论中发现“把相同体积的水倒入底面积不同的杯子中,水面的高度不同”及“杯子的底面积×水的高度=水的体积”这一规律,使学生通过自己的努力,归纳、概括出反比例的意义及特点。
3.借助已有的学习经验总结反比例关系式。
因为正、反比例体现的都是两种相关联的量之间的关系,且正比例关系表达式学生已经掌握,所以在总结反比例关系表达式时,教师要引导学生根据已有的经验自己总结出反比例关系表达式,体验成功的喜悦。
课前准备
教师准备 ppt课件
学生准备 玻璃杯 直尺 水 实验记录单
教学过程
⊙复习引入
1.复习。
课件出示:一个圆柱形水箱,底面积是0.78平方米,高是1.2米,这个水箱能装水多少立方米?
(1)引导学生独立解决问题。
(2)提问:你是根据什么公式进行计算的?
预设
生:圆柱的体积=底面积×高。
(3)师追问:圆柱的体积、底面积和高之间还有怎样的数量关系呢?在什么情况下其中的两种量成正比例关系?
预设
生1:底面积=圆柱的体积÷高,高=圆柱的体积÷底面积。
生2:如果底面积一定,圆柱的体积与高就成正比例;如果高一定,圆柱的体积与底面积就成正比例。
2.引入课题。
如果圆柱的体积一定,那么底面积与高又成怎样的关系呢?这就是本节课我们要学习的内容。(板书课题:反比例)
设计意图:通过复习有关圆柱的体积问题以及列举圆柱的体积、底面积和高之间的关系,在培养学生思维完整性的同时,为新知的学习作铺垫。
⊙探究新知
1.在具体情境中初步感知成反比例关系的量。
(1)课件出示教材47页例2,引导学生结合问题进行观察。
师:观察情境图,理解图意后,观察下表,先一行一行地观察,再一列一列地观察,并思考下面的问题。
杯子的底面积与水的高度的变化情况如下表。
杯子的底面积/cm2
10
15
20
30
60
…
水的高度/cm
30
20
15
10
5
…
①表中有哪两种量?
②水的高度是怎样随着杯子底面积的大小变化而变化的?
③相对应的杯子的底面积与水的高度的乘积分别是多少?
(2)学生思考后在小组内交流。
(3)全班交流。
预设
生1:有杯子的底面积和水的高度这两种量。
生2:杯子的底面积增大,水的高度降低;杯子的底面积减小,水的高度升高。
生3:相对应的杯子的底面积与水的高度的乘积都是300,是一定的,也就是杯子的底面积×水的高度=水的体积(一定)。
(4)明确什么是成反比例的量。
因为水的体积一定,所以水的高度随着杯子的底面积的变化而变化。杯子的底面积增大,水的高度反而降低;杯子的底面积减小,水的高度反而升高。但是无论怎样变化,杯子的底面积和水的高度的乘积总是一定的,所以我们就把杯子的底面积和水的高度这两种量叫做成反比例的量,它们的关系叫做反比例关系。
会计实习心得体会最新模板相关文章: