很多时候,教案的反思能够提升教师的专业素养和能力,想要实现有效的知识传递,教案需要有明确的教学步骤,会写范文网小编今天就为您带来了蒙氏数学分解教案7篇,相信一定会对你有所帮助。

蒙氏数学分解教案篇1
教学目标
1.知识与技能
了解因式分解的意义,以及它与整式乘法的关系.
2.过程与方法
经历从分解因数到分解因式的类比过程,掌握因式分解的概念,感受因式分解在解决问题中的作用.
3.情感、态度与价值观
在探索因式分解的方法的活动中,培养学生有条理的.思考、表达与交流的能力,培养积极的进取意识,体会数学知识的内在含义与价值.
重、难点与关键
1.重点:了解因式分解的意义,感受其作用.
2.难点:整式乘法与因式分解之间的关系.
3.关键:通过分解因数引入到分解因式,并进行类比,加深理解.
教学方法
采用“激趣导学”的教学方法.
教学过程
一、创设情境,激趣导入
?问题牵引】
请同学们探究下面的2个问题:
问题1:720能被哪些数整除?谈谈你的想法.
问题2:当a=102,b=98时,求a2-b2的值.
二、丰富联想,展示思维
探索:你会做下面的填空吗?
1.ma+mb+mc=()();
2.x2-4=()();
3.x2-2xy+y2=()2.
?师生共识】把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做分解因式.
三、小组活动,共同探究
?问题牵引】
(1)下列各式从左到右的变形是否为因式分解:
①(x+1)(x-1)=x2-1;
②a2-1+b2=(a+1)(a-1)+b2;
③7x-7=7(x-1).
(2)在下列括号里,填上适当的项,使等式成立.
①9x2(______)+y2=(3x+y)(_______);
②x2-4xy+(_______)=(x-_______)2.
四、随堂练习,巩固深化
课本练习.
?探研时空】计算:993-99能被100整除吗?
五、课堂总结,发展潜能
由学生自己进行小结,教师提出如下纲目:
1.什么叫因式分解?
2.因式分解与整式运算有何区别?
六、布置作业,专题突破
选用补充作业。
蒙氏数学分解教案篇2
教学内容 :
教材第1220页及21-23页练习一(第一课时)。
教学目标:
1、使学生能熟练地数出1-5以内物体的个数,理解1-5每个数的实际含义,会读会写数字1-5。
2、观察、活动、交流,初步理解几和第几的不同含义。能区别几个和第几个。
3、理解0的具体含义,会读、写0。
4、初步学会用一一对应的方法比较物体的多少,了解同样多、多、少的'含义。认识符号=、>和<,会用=、>和<表示两个数的大小。
重点难点:
1、进一步加深对5以内数的认识。
2、进一步加深对5以内数的大小比较,记住5以内数的顺序位置。
3、进一步加深对基数和序数的认识。
教学设计:
一、1-5的认识
(一)导入新课
小朋友在前面已经学习了数一数,请小朋友在教室里找一些东西,并数给小组里的同学听听。 让学生自由地数一数周围的物体,并进行交流。 这一节课先认识1、2、3、4、5。板书:1-5的认识。
(二)学习认数
1、初步感知1、2、3、4、5。 出示图,说明黑板上写的是教师节快乐。 说说图中的小朋友在干什么。提问:图上画的是什么?图上有些什么? 让学生自己数一数各有几个? 交流数的结果,并一起数出图中物体和人的个数。
2、认数、写数。
(1)接着用算珠表示数量15,对应着出示数字15,让学生认一认、读一读。
(2)让学生按顺序读1-5各数。
(3)你能在周围找一找,还有哪些东西的个数在1-5之间吗?找出来数一数并和同学说一说。
(4)你能用1、2、3、4、5分别说一句话吗?
(5)分析字形,指导学生书写。
(三)巩固练习
1、想想做做1 看图连线,独立完成,集体订正时指名说一说你是怎样连的?
2、想想做做2 看数涂,独立完成,同桌互相交流。
3、想想做做3 看图写数,并分组说一说各有几个?
4、想想做做4 动手操作,排一排,读一读。按一定的顺序把这几个数字娃娃排队。
蒙氏数学分解教案篇3
让幼儿了解生活中的数学
活动目标
1经力对数量为8.9的物品进行分解、组合的过程,感知8、9的分解、组合。
2感受总数与部分数之间的关系。
3培养初步的观察力,思考能力。
4引导幼儿积极与材料互动,体验数学活动的乐趣。
5引发幼儿学习的兴趣。
教学重点、难点
8、9的分解组合,感受总数与部分数之间的关系。
活动准备
1、教具:“筹码”、“数字卡片”、“分合号”
2、学具:“筹码”、“数字卡片”、“分合号”纸、笔人手一份。
3、 《操作册》第27页。
活动过程
一、运用“数字碰球”游戏复习数的分解、组合。
二、学习8的分解、组合。
1、教师分给幼儿每人8片筹码,按自己的想法分成两份,并用“数字卡片”、“分合号”记录分解结果,先请分成7和1的幼儿展示自己的分法和结果,引导幼儿感受将8分成7和1或分成7和1,虽然改变了两个数字前后顺序,但合起来的结果都是一样的。
2、请8分成2和6,3和5两种分法的幼儿展示自己的分解过程和结果,引导幼儿找出与这种分法的另外两种记录结果。小结俩个部分数,交换了位置,合起来总数是一样的。
3请还有不同分法的幼儿展示:即8分成4和4.
4让幼儿集体完整地读一读8的分解和组合。
三、学习9的分解、组合
1、教师分给幼儿每人9片筹码,让幼儿尝试把自己每次分到的结果记录在纸上,并引导幼儿在摆分合式时按一个分数递增,另一个部分数递减的规律来摆分合式并记录,再找出其中有相同数字的分法。
2、把幼儿分解的结果展示在黑板,并进行检查。
四、游戏活动:做手指游戏“找部分数”。
五、交流小结,收拾学具。
六、活动延伸:完成《操作册》p27
教学反思
1、这节课活动目标很明确难度适中,大部分幼儿能听懂,学会自己操作,幼儿动手能力也比教强,学习兴趣浓厚
2不足:教师讲课不够幼儿化。上课时间太长。
蒙氏数学分解教案篇4
活动设计背景
数的组成和分解是数概念内容中的一个重要组成部分。新《纲要》要求幼儿“从生活和游戏中感知事物的数量关系”,还要关注幼儿探索、操作、交流、问题解决和合作的能力。本学期大班幼儿已经学过了《2—6以内各数分解与组成》,对于数的组成孩子们也已经有了一定经验。我尝试让幼儿亲自动手操作、然后记录结果,在教师的引导下寻找分解和组成的规律,让幼儿在玩中学,以达到活动目标与幼儿兴趣最优化的结合。
活动目标
1、幼儿通过自主探索动手操作,感知7的分解组成,掌握7的6种分法。
2、在感知数的分解组成的基础上,掌握数组成的递增、递减规律、互相交换的规律。
3、发展幼儿观察力、分析力,记录能力培养幼儿对数学的兴趣。
4、培养幼儿比较和判断的能力。
5、发展幼儿逻辑思维能力。
教学重点、难点
1、感知整体与部分的关系,学习并记录7的6种分法
2、总结归纳7以内数的分解和组成规律。
活动准备
教具:大挂图一张(图上两座房子、图两边各有一个画有空格的7的分解式)、7个卡片、记号笔、记录纸。
学具:幼儿每人一张图(图上两座房子、图两边各有一个画有空格的6的分式)、每人7个小批每个苹果卡片、铅笔、橡皮、1—6数字卡若干
活动过程
(一)导入
1、师:秋天来了,树上的平果熟了,树妈妈要把苹果送给两只小猴子。出示挂图、苹果树、7个苹果
问:树妈妈要把它送给小猴子,怎样分呢?
2、出示大挂图引出“7的分解组成”
师:把苹果分到小猴家里,一共有几各苹果(和幼儿一同点数共7只)出示“7的数字卡。
师:7个苹果怎样分,树妈妈犯了愁,不知该怎样分,有几种分发。请小朋友们说一说
(二)基本部分
1、幼儿将7个小苹果分在两座房子里,每分一次将分的结果记录下来
2。请幼儿分别到前面说一说自己分的结果。教师在记录纸上记录幼儿的分法。
3、教师归纳幼儿的分法,总结出“7”的6种分法。
4、观察幼儿无序的分法,引导学习有序进行“7”的分解组成
(1)教师演示给7个苹果的分法,一边分一边和幼儿点数两座房子苹果的数量,并记录下分的结果,“7”可以分成1和6、2和5、3和4、4和3、5和2。6和1
(2)幼儿观察“7”的分解式,初步掌握有序的进行“7”的分解组成,了解数组成的递增、递减规律、互相交换的规律。
5、幼儿第二次为小动物分房子,尝试有序的进行“7”的分解组成,记录每次分的结果。
(三)、结束部分
游戏《找朋友》
幼儿每人挑选一个数字卡(1—6)戴上,伴随找朋友的音乐找到和自己的数字和在一起是“7”的幼儿做朋友。
教学反思
本次活动的设计根据新《纲要》精神,要求幼儿“从生活和游戏中感知事物的数量关系”,还要关注幼儿探索、操作、交流、问题解决和合作的能力。数的组成和分解是数概念内容中的一个重要组成部分。本学期我们大班幼儿已经学过了《2—6以内各数分解与组成》,对于数的组成孩子们也已经有了一定经验。我尝试让幼儿亲自动手操作、然后记录结果,在教师的引导下寻找分解和组成的规律,让幼儿在玩中学,以达到活动目标与幼儿兴趣最优化的结合。,本次活动以尝试分苹果,幼儿通过自主探索动手操作,感知7的分解组成,掌握7的6种分法,在感知数的分解组成的基础上,掌握数组成的递增、递减规律、互相交换的规律。
活动围绕着给小动物分苹果进行,。加上幼儿乐于帮助小动物分房子的喜悦心情,充分调动了幼儿动手操作、自主探索的积极性。在第一次给分苹果并记录的过程中,幼儿通过操作、探索,找出了“7”的6种分法,在展示幼儿分房记录时,有的孩子没有找出了“7”的6种分法,还有的分出的一组数字合起来不是“7”,这是孩子们第一次尝试记录,对没有掌握好的在下一个环节中我会多给予关注。接下来引导观察幼儿无序的分法,教师并演示分苹果,一边分一边和幼儿点数苹果数量,并记录下分的结果,“7”可以分成1和6、2和5、3和4、4和3、5和2,6和1,引导学习有序进行“7”的分解组成,幼儿观察“7”的分解式,初步掌握有序的进行“7”的分解组成,了解数组成的递增、递减规律、互相交换的规律。幼儿在第二次为分苹果时,掌握了有序的进行“7”的分解组成,记录每次分房的结果。活动在游戏《找朋友》的欢快气氛中结束,幼儿通过探索、操作、交流、在玩中学,学中玩,达到活动目标与幼儿兴趣最优化的结合。
蒙氏数学分解教案篇5
活动目标
1、学习4的分解与合成,知道4能分成两份有3中分法,知道哪两个数合起来是4,并能用较为清楚的语言表达分与合的过程。
2、通过游戏培养幼儿学习数学的兴趣,体验同伴合作的快乐。
3、引发幼儿学习分解的兴趣。
4、能在集体面前大胆发言,积极想象,提高分解的能力。
重点难点
学习4的分解与合成,知道4能分成两份有3中分法,知道哪两个数合起来是4。
活动准备
课件,蛋糕,冰激凌 ,草莓图片。(人手一份)。
活动过程
一、 导入活动
二、 学习4的分解
1、师:今天小猫邀请它的好朋友,小兔子,小狗到家里来做客, 还为小朋友准备了好多好吃的东西。
2、师:我们先来看看有些什么好吃的东西?有多少?
幼;4个草莓 4冰激凌 4个蛋糕 ····
3、师:那怎样把这些东西数量是4的东西两份呢,谁知道?
三、请幼儿仔细观看教师分解
四、教师发给幼儿分人一种4份教具 请幼儿来分解
教师提问:
你是怎么分的?请你说出来。
五、教师小结。
师:4分成的两份有三种分法,请幼儿跟老师一起念出三种分法。
六 、活动延伸
在区域活动中练习的分解与组成。
教学反思:
大班思维中出现抽象逻辑思维的萌芽,在认识事物方面,不仅能够感知事物的特点,而且能够进行初步的归纳和推理。本班幼儿好学、好问,喜欢有挑战性的学习内容。学习内容要有一定适当的难度,要有一定的挑战性,我设计了归纳4的分合式中两次数列的关系这一环节,目的是让幼儿“在跳一跳够得着的地方”进一步升他们数概念质地飞跃。
蒙氏数学分解教案篇6
教学设计思想:
本小节依次介绍了平方差公式和完全平方公式,并结合公式讲授如何运用公式进行多项式的因式分解。第一课时的内容是用平方差公式对多项式进行因式分解,首先提出新问题:x2-4与y2-25怎样进行因式分解,让学生自主探索,通过整式乘法的平方差公式,逆向得出用公式法分解因式的方法,发展学生的逆向思维和推理能力,然后让学生独立去做例题、练习中的题目,并对结果通过展示、解释、相互点评,达到能较好的运用平方差公式进行因式分解的目的。第二课时利用完全平方公式进行多项式的因式分解是在学生已经学习了提取公因式法及利用平方差公式分解因式的基础上进行的,因此在教学设计中,重点放在判断一个多项式是否为完全平方式上,采取启发式的教学方法,引导学生积极思考问题,从中培养学生的思维品质。
教学目标
知识与技能:
会用平方差公式对多项式进行因式分解;
会用完全平方公式对多项式进行因式分解;
能够综合运用提公因式法、平方差公式、完全平方公式对多项式进行因式分解;
提高全面地观察问题、分析问题和逆向思维的能力。
过程与方法:
经历用公式法分解因式的探索过程,进一步体会这两个公式在因式分解和整式乘法中的不同方向,加深对整式乘法和因式分解这两个相反变形的认识,体会从正逆两方面认识和研究事物的方法。
情感态度价值观:
通过学习进一步理解数学知识间有着密切的联系。
教学重点和难点
重点:①运用平方差公式分解因式;②运用完全平方式分解因式。
难点:①灵活运用平方差公式分解因式,正确判断因式分解的彻底性;②灵活运用完全平方公式分解因式
关键:把握住因式分解的基本思路,观察多项式的特征,灵活地运用换元和划归思想。
蒙氏数学分解教案篇7
课型 复习课 教法 讲练结合
教学目标(知识、能力、)
1.了解分解因式的意义,会用提公因式法、平方差公式和完全平方公式(直接用公式不超过两次)分解因式(指数是正整数).
2.通过乘法公式 , 的逆向变形,进一步发展学生观察、归纳、类比、概括等能力,发展有条理的思考及语言表达能力
教学重点掌握用提取公因式法、公式法分解因式
教学难点根据题目的形式和特征 恰当选择方法进行分解,以提高综合解题能力。
教学媒体学案
教学过程
一:【 课前预习】
(一):【知识梳理】
1.分解因式:把一个多项式化成 的形式,这种变形叫做把这个多项式分解因式.
2.分解困式的方法:
⑴提公团式法:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.
⑵运用公式法:平方差公式: ;
完全平方公式: ;
3.分解因式的步骤:
(1)分解 因式时,首先考虑是否有公因式,如果有公因式,一定先提取公团式,然后再考虑是否能用公式法 分解.
(2)在用公式时,若是两项,可考虑用平方差公式;若是三项,可考虑用完全平方公式;若是三项以上,可先进行适当的分组,然后分解因式。
4.分解因式时常见的思维误区:
提公因式时,其公因式应找字母指数最低的,而不是以首项为准.若有一项被全部提出,括号内的项 1易漏掉.分解不彻底,如保留中括号形式,还能继续分解等
(二):【课前练习】
1.下列各组多项式中没有公因式的是( )
a.3x-2与 6x2-4x b.3(a-b)2与11(b-a)3
c.mxmy与 nynx d.aba c与 abbc
2. 下列各题中,分解因式错误的是( )
3. 列多项式能用平方差公式分解因式的是
4. 分解因式:x2+2xy+y2-4 =_____
5. 分解因式:(1) ;
(2) ;(3) ;
(4) ;(5)以上三题用了 公式
二:【经典考题剖析】
1. 分解因式:
(1) ;(2) ;(3) ;(4)
分析:①因式分解时,无论有几项,首先考虑提取公因式。提公因式时,不仅注意数,也要 注意字母,字母可能是单项式也可能是多项式,一次提尽。
②当某项完全提出后,该项应为1
③注意 ,
④分解结果(1)不带中括号;(2)数字因数在前,字母因数在后;单项式在前,多项式在后;(3)相同因式写成幂的形式;(4 )分解结果应在指定范围内不能再分解为止;若无指定范围,一般在有理数范围内分解。
2. 分解因式:(1) ;(2) ;(3)
分析:对于二次三项齐次式,将其中一个字母看作末知数,另一个字母视为常数。首先考虑提公因式后,由余下因式的项数为3项,可考虑完全平方式或十字相乘法继续分解;如果项数为2,可考虑平方差、立方差、立方和公式。(3)题无公因式,项数为2项,可考虑平方差公式先分解开,再由项数考虑选择方法继续分解。
3. 计算:(1)
(2)
分析:(1)此题先分解因式后约分,则余下首尾两数。
(2)分解后,便有规可循,再求1到20__的和。
4. 分解因式:(1) ;(2)
分析:对于四项或四项以上的多项式的因式分解,一般采用分组分解法,
5. (1)在实数范围内分解因式: ;
(2)已知 、、是△abc的三边,且满足 ,
求证:△abc为等边三角形。
分析:此题给出的是三边之间的关系,而要证等边三角形,则须考虑证 ,
从已知给出的等式结构看出,应构造出三个完全平方式 ,
即可得证,将原式两边同乘以2即可。略证:
即△abc为等边三角形。
三:【课后训练】
1. 若 是一个完全平方式,那么 的值是( )
a.24 b.12 c.12 d.24
2. 把多项式 因式分解的结果是( )
a. b. c. d.
3. 如果二次三项式 可分解为 ,则 的 值为( )
a .-1 b.1 c. -2 d.2
4. 已知 可以被在60~70之间的两个整数整除,则这两个数是( )
a.61、63 b.61、65 c.61、67 d.63、65
5. 计算:= , = 。
6. 若 ,那么 = 。
7. 、满足 ,分解因式 = 。
8. 因式分解:
(1) ;(2)
(3) ;(4)
9. 观察下列等式:
想一想,等式左边各项幂的底数与右边幂的底数有何关 系?猜一猜可引出什么规律?用等式将其规律表示出来: 。
10. 已知 是△abc的三边,且满足 ,试判断△abc的形状。阅读下面解题过程:
解:由 得:
①
②
即 ③
△abc为rt△。 ④
试问:以上解题过程是否正确: ;若不正确,请指出错在哪一步?(填代号) ;错误原因是 ;本题结论应为 。
四:【课后小结】
布置作业 地纲
会计实习心得体会最新模板相关文章: