教案其实是教师对课程目标、内容和方法的具体规划和安排,完备的教案能够引导学生逐步认识知识点之间的逻辑关系,会写范文网小编今天就为您带来了四年级的数学教案推荐5篇,相信一定会对你有所帮助。
四年级的数学教案篇1
教学内容:北师大版教材p104
教学目标:
1、通过摆图形,尝试找出图形中的规律,并用字母表示
2、通过摆图形,找规律的活动,发展抽象概括能力
教学重点:通过摆图形,找规律的活动,发展抽象概括能力
教学过程:
一、创设情境、发展新知
通过用小棒摆三角形,寻找所摆三角形个数与所需小棒根数之间的关系。
二,探索方法
1、鼓励学生从图形、数等多种角度寻找关系,并加以对应,引导学生发现每多摆一个三角形,就增加2根小棒。并将这一关系用算式表达出来,最后用字母表示出来:2n+1。
(1)2×26+1=53(根)
(2)2n+1=63,2n=62,n=31,能摆31个三角形
2、通过列表、观察图形找出正方形的个数与小棒根数之间的关系,引导学生发现每多摆一个正方形,就增加3根小棒
列出算式来表示需要小棒的根数,从中发现规律。在每个算式中,都有加1,一个正方形3×1再加1;2个正方形3×2再加1;3个正方形3×3再加1,从而推出n个正方形需要小棒的`根数是:3n+1。
(1)3×12+1=37(根)
(2)3n+1=46,3n=45,n=15。能摆15个正方形。
三、解决问题
利用上面用小棒摆三角形和正方形的方法,找出摆八边形的规律
(1)、摆一个八边形,需要7×1+1=8根小棒,摆2个需要7×2+1=15根小棒,摆3个需要22根小棒
(2)摆n个八边形需要7n+1根小棒。
四年级的数学教案篇2
教学目标
1.让学生经历量角器产生的过程,渗透实践出真知的思想意识.
2.认识1度的角,能正确的使用量角器进行角的度量.
3.让学生通过自主探究、合作交流,体验发现问题、提出问题、解决问题这一探究过程,激起学生的探究欲望,培养学生的探究能力,掌握用量角器量角这一技能。
教学重难点
教学重点:经历量角器产生的过程
教学难点:能正确的使用量角器进行角的度量。
教学工具
ppt课件
教学过程
一、创设情境、提出问题
师:同学们请看屏幕。(出示三个滑梯)玩过吗?
生:玩过
师:大家都玩过!想玩哪个?
生1:第三个,这样可以滑的快一些
生2:第一个,我想滑的慢一些,我会害怕
师:观察一下,这三个滑梯有什么不同?
生1:有高有矮
师:哦,你的意思是说它们的角度不同?原来角也有大小啊?生活中我们一般以2号滑梯为标准,今天这节课我们以2号滑梯所形成的角∠1为例一起研究:角的度量(板书)
二、主动探究、合作学习
1.明确测量标准要统一,为“度”的出现作准备
师:∠1有多大呢?我们可以借助一些学具来表示它的大小,老师为大家准备了∠1和一些学具,在1号学具袋中,请小组长打开,小组合作,借助学具表示出∠1的大小。
学生动手测量
师:量完了吗?谁能到前面来介绍你是怎样量的?
生边操作边解说:角的顶点对齐,一边对齐
师:你们这个方法非常好,老师帮你把它记录下来(板书:角顶点边)
师:得到是结果是:3个(板书)
师:还有不同的测量结果吗?
生:2个。
师:还有吗?
生:1个
师:我们测量的都是∠1,但测量结果的结果为什么不一样呢?把你们的小角举起来看一下
生:我们用来测量的角大小不一样
师:也就是标准不统一,所以测量同一个角的结果不一样,要想获得统一的测量结果应该怎么办?
生:用同样大的角来量
2、引出半圆
师:好主意!下面我们采用统一的标准角在小组内再来测量∠1的大小,这个统一的标准角就放在2号学具袋里,请小组长打??
生操作测量
师:哪个小组交流一下?说说你们小组测量的结果是多少?你是怎样测量的?能边操作边解说吗?
生:角的顶点对齐,一边对齐
师:哦,你在测量的过程中也注意到了(指板书)角的顶点与量角工具的顶点对齐,角的一边与量角工具的一边对齐!谢谢你的交流!
师:老师这里还有一个钝角,你能量出它包含了几个这样的标准角吗?谁到台上量一量?
生边操作:顶点对齐,一边对齐
师:我刚才注意到这个同学在测量这个角时,把这个半圆又展开了一部分,(问生)你为什么这么做?
生:三个小角不够了
师:你真聪明!
师:我们再来测量一个角,大家看这是个什么角?(生:平角)谁来测量一下这个平角?
生边操作:顶点对齐,一边对齐
师:你把这个半圆全展开了!数数你的测量结果
生:8个
师:操作非常规范,请回
师:我们刚才用统一的标准角测量了几个角的大小,想一想,这几位同学在测量每一个角的操作过程中,注意了些什么?
生:顶点对齐,一边对齐
师展示:这些同学都把角的顶点对齐了半圆的这个点,我们给它取个名字叫做中心点(板书),我们刚才说了,测量时角的哪一部分和中心点对齐?(生:顶点)
师:看来这个量角工具真是方便啊,为了让大家看的更清楚,老师把这个工具搬到课件上,再用它来量一个角(课件展示,一锐角不能量)老师也注意到了角的顶点和量角工具的中心点对齐,角的一边与量角工具的这条线对齐。用这个测量工具测量这个角,同学们觉得合适吗?(不合适)怎么办?小组讨论一下
生:把半圆多折几次
师:你的意思是说把半圆平均分的份数再多一些,对吗?
3、引出并认识量角器
师:你的想法真好,已经非常接近科学家们的思想了!其实早在很多年前科学家们已经发明了量角器来测量角的大小,量角器把半圆平均分成180份,其中的任何一份都是1度,记作1°(板书)我们来看0刻度线到1刻度线之间所形成的角就是一个1°的角(课件演示)你还能再找一个1°的角吗?
生1:1刻度线到2刻度线之间就是1°的角
生2:100刻度线到101刻度线之间就是1°的角
师:你能找一个3°的角吗?
生:0刻度线到3刻度线之间就是3°的角
师:谁到黑板上来写一个3°?
生写
师:你写的真规范,请回
师:我们把0刻度所对应的这条线叫做0°刻度线,如果用量角器来测量角时猜测一下0°刻度线与角的哪一部分对齐?
生:角的一边(板书)
师:我们来读一下刚才那个角的度数。
生:39°
师:你是怎么读的?根据角的哪一部分读出的39°
生:角的另外一条边
师:好方法!老师帮你记录下来(板书:另一边度数)
师:再来尝试一下(课件出示两个角)
生读数
师:在3号学具袋中就有一个量角器,请同学们打开,仔细观察手中的量角器与屏幕上的有什么不同?
生:还有一圈数
师:哦,也就是量角器有两圈数字,观察手中量角器这两圈数字有什么区别?(屏幕给出内刻度线)
生:内外圈数字相反
师:也就是说:外圈从左向右顺时针数内圈从右向左逆时针数
师:多了一圈数字,也就多了一条0°刻度线,为了区分,我们把中心点左边外圈所对应的这条0°刻度线叫做外0°刻度线,把中心点右边内圈所对应的这条0°刻度线叫做内0°刻度线。
师:大家对量角器已经有了初步的了解,能不能借助量角器读出下面这几个角的度数呢?请看大屏幕
(30°的角)
生:30°
师:你是怎样读数的?读的是哪一圈刻度?
生:角的一边对齐内0°刻度线,我读的是内圈刻度
师:再来读一个角
生:130°
师:这个钝角是多少度?
生:150°
师:请同学们总结一下,什么时候读内圈刻度?什么时候读外圈刻度?小组讨论一下。
师:大部分小组已经有了自己的观点,哪个小组来交流一下
生:角的一边对齐外0°刻度线就读外圈刻度,角的.一边对齐内0°刻度线就读内0°刻度线
师:同学们真棒!在这么短的时间内就学会了借助量角器读出角的度数!
5、用量角器测量角
师:这个角是多少度呢?我们一起来测量一下吧!同学们仔细观察,老师在量角时注意到了什么?
生:顶点与中心点对齐,一边与0°刻度线对齐,另一边读度数(生边说,课件边出示)
师:想不想亲自量一量?(想)请同学们用手中的量角器测量这张练习纸上的每一个角的度数并做好记录(练习卡上有锐角、直角、钝角、平角、周角开口不同,边长不同)开始!
学生开始测量
师:都测量好了?谁来交流一下测量结果?
生:这个直角是90°,这个钝角是130°,这个锐角是60°这个平角是180°,这个周角是360°
师:你能不能演示一下这个钝角的测量过程
生:把量角器转一下,顶点与中心点对齐,一边与0°刻度线对齐,另一边读度数,所以是130°
师:你能再演示一下这个周角的测量过程吗?
生:转半圈是180°,它转了一圈就是两个180°,也就是360°
师:从这里你可以看出周角和平角有什么关系?
生:我发现一个周角等于两个平角等于四个直角(师板书:1周角=2平角=4直角)
师:谢谢你聪明的小伙子
师:回忆一下刚才用量角器测量角的过程中,经历了怎样的步骤?
生:顶点与中心点对齐,一边与0°刻度线对齐,另一边读度数(师补充板书)
师总结:这位同学总结的真好!在用量角器测量角时,就应该注意到这几点(指板书),也就是:中心对顶点,0线对一边,他边看度数,内外要分辨
7、画角
师:同学们,你们知道吗?量角器除了量角还可以画角呢!想试一下吗?(想)请尝试着用量角器画一个40°的角
生尝试画角
师:谁上台来交流一下?你能把你的画角过程演示一遍,画一个40°角吗?
生:我先画一个点,再画一条线,在40°的地方点一个点,在连起来
师:操作非常规范
师:我们一起回顾刚才的画角的过程(课件)
首先确定角的顶点,它与谁对齐?
接着确定角的其中一条边,它与谁对齐?
然后确定角的另一条边
最后把顶点与这一点相连,我们画的这个角就是一个40°的角
三、课堂总结
师:同学们积极动脑踊跃发言,出色的完成了本节课的学习任务。通过这节课的学习,你有哪些收获?
四、拓展训练
师:最后有几个问题需要在课下认真研究一下用这个坏掉的量角器能否量出角的度数?
四年级的数学教案篇3
建议思考的问题
1.教学中课本上的结论是否就是定论?
2.课堂上采用小组讨论形式,万一发言一发不可收,提出令人尴尬的问题或课堂教学秩序混乱,教学任务完不成怎么办?
3.课堂上小组讨论是否会流于形式,反而浪费了课堂时间?
背景
最近,我教《约数和倍数》这一章,感到非常头疼。因为我教书8年来,一直认为这章概念多,难理解,要想学生学好,必须讲得细,扎扎实实练好每一节。所以,我认真备课,把要学的每一个知识点都准备讲得清清楚楚。但事与愿违,上课时,许多学生觉得挺简单,我在讲解时,他们不停地插话,打断我的思路;可让他们做作业时,却错误百出,真是“自以为是”!但是不让他们插话,认真听我讲,结果他们兴趣索然,趴在桌上不想听课!我真是不知该怎么办,甚至埋怨这班学生不如其他班的,真是“朽木不可雕也!”。
后来,我停止了抱怨,开始反思:如何能让学生积极、主动地参与呢?嗯……对!要转变学生的学习方式,使他们成为学习的主人。
案例描述
一、复习。
1.什么叫公约数?什么叫最大公约数?
2.自己默默地想一想如何求两个数的最大公约数。
二、教学新课。
(黑板上出示)求下面每组数的最大公约数,如能简便,请用简便方法计算;如不行,就用短除法来求。
11和12 8和15 12和18 21和7
学生们认真地观察这些数字,进行着思考和计算。一会儿,有的学生喜形于色,有的学生紧锁眉头,此时的教室里鸦雀无声,每个学生都在积极地思索(进入了状态),5分钟过去了,一个学生轻轻问:“段老师,讲讲吧?”我歉然一笑,说:“老师现在不会告诉你的。”接着又向大家说:“现在分小组讨论,交流各自的意见。”
一句话击起了“千层浪”,学生们展开了热烈的讨论,有些学生认为4个题都可简便,有些学生认为有三个可简便,有些学生还认为简便的方法不只一种。这时,我出示了一张表:
根据工作表,小组长带领组员思考要探究的问题,大胆地提出自己的猜想,并尝试着进行实践证明……在一番自主活动之后,师与生、生与生之间充分展示自己的思考方法和探究过程——
生:我认为第一组“11和12”可以简便计算,它们相差是1,最大公约数就是1。
生:(对刚才那个学生反问)我认为你的想法是错误的,11和12互质,所以它们的最大公约数是1。
生:(支持第一个学生)我举了好几个例子,比如7和8相差1,最大公约数就是1。
生:我认为只要是两个互质数,它们的公约数就只有1,因此,最大公约数也是1,例如:第一组中的“11和12”,第二组中的“8和15”;而其中11和12的最大公约数是1,也正好相差是1,这是一个巧合,也是正确的,但它不能代表所有互质数的求法,只能代表相邻的两个数的求法,又因为相邻的两个数一定互质,我们为何不把它归为一类:两个互质数,最大公约数就是1。
同学们听后纷纷投去赞许的目光。
师:同学们,道理只有越辩越明,经过刚才的讨论,我们得出一个结论:如果两个数是互质数,它们的最大公约数就是1。(投影出示)
生:我们组认为第三组“12和18”求最大公约数也可用简便方法,可以用公约数6去除,再看所得的商还有没有其他公有质因数,结果没有了公有质因数,因此,12和18的最大公约数是6。
生:(反对刚才那个同学所说的)我们在用短除法求最大公约数时,只能用质因数去除,怎么能用公约数去除呢?
生:是啊!只能用公有质因数去除,6是一个合数,不能用6去除。(一片议论声。)
师(引导):大家想一想最大公约数是求什么?
生:是求两个数公有的约数中最大的一个。
师:既然这个最大公约数既是18的约数,又是12的约数,因此,就可以用18和12的公约数去除,大家之所以习惯用公有质因数去除,是因为短除法当时从分解质因数演变过来的,但从最大公约数的意义考虑,是可以用它们的公约数去除的。
学生听得非常认真,并且有恍然大悟的神情。
生:我发现第四组“21和7”也有简便方法,它们的最大公约数是7,7的约数有7,21的约数也有7,所以,它们的最大公约数是较小数7。
生:我对刚才那位同学进行补充,因为21是7的倍数,所以,21的约数必定有7,7又是它本身的约数,因此,它们的最大公约数是7。
师:同学们刚才说得非常好,这就是第二个规律(投影出示):如果较小数是较大数的约数,那么较小数就是这两个数的最大公约数。
经过刚才的发言,举手的人渐渐少了,可有一位同学仍坚持不懈地高高举着手,我便请他发言。
生:我认为除了老师您黑板上的例子可以简便,还有一种可以简便处理的方法,那就是:两个相邻的奇数一定互质,它们的最大公约数也是1,虽然它包含在互质数这一类中,但仍比较特殊。
他的回答着实让我和同学们吃了一惊,当时,我也对他的答案是否正确把握不准。于是便领着学生们进行验证,发现果然是正确的,同学们都露出了佩服的神情。
接下来,同学们又认真地看书中例题,并且积极地做了相关的练习题。
课后反思
上面这个案例,是我在教学中的一个片段,它体现了我思想上的一些创新和转变。
1.由指令性活动向自主性探索转化。
在前段时间教学时,总是对学生不放心,结果只会束缚学生的手脚,阻碍学生思维的发展,因为真正能培养学生创新精神和实践能力的实践活动必须是学生自主的活动。这一节课中,学生自己在进行观察、假设、探究等高层次的思维活动之后,得出的结论是我始料不及的。
2.由问答式教学向学生独立思考基础上的合作学习转变。
在教学中,学生一直处于发现问题、解决问题的状态之中,用自己的思维方式进行探究,形成独特见解,此时的合作有了基础。当有了不同意见时,才会产生创新的思想火花;当意见相同时,就会充分展示自己的思想和表现欲,那小组合作怎会流于形式呢?可能这会“浪费”些时间,但这让我们的学生获得了多少知识和能力啊!
3.课本不能被当作惟一不可改变的标准。
课本在学生学习时起到了至关重要的作用,但学生可在此基础上进行探索和创新。例如在这节课上,学生们总结出来的规律可能被分别归入书中几类,但他们所发现的细微的结构特征是书上所没有的,它是那样有新意,我们有什么理由可以“一刀切”呢?
学生的学习方式的转变关键在于教师,一方面要求教师不断更新教学观念,树立先进的教学理念;另一方面要求教师能将先进的教学理念转化为教学行为,特别是要改变长期形成的、习惯了的旧的教学方式。只有让学生充分从事探究学习活动,发挥他们的自主性、主动性、选择性和创造性,才能真正地使他们成为学习的主人!
四年级的数学教案篇4
教材分析:
乘法分配率是进行简便计算的一个难点,由于学生没有足够相关的生活经验和类似的认识,因此比较难于把握。故把重点放在引导学生探索问题,通过学生互动,发现规律,提出设想,验证结论,最后灵活运用结论解决问题。
学情分析:
由于平时进行课堂教学改革,学生学习数学的热情比较高,一部分学生还喜欢发表自己的见解,借以带动全班的学习,所以我决定创设情景,调动学生自主学习,通过操作、交流突破难点。
学习目标:
1.动手“做”数学;
2.充分发挥“兵”帮“兵”的作用;
3.组织学生解决问题。
设计理念:
根据课程改革的目标,实现以人为本的现代教学观,切实改进课堂教学,改变传统牵着学生走的教学行为。
学生是按照自己的思维方式去认识世界的,因此要组织好学生的活动,让学生通过探索,自己去发现问题,提出问题,从而解决问题,真正落实学生的主体地位。在教学中,教师能根据学生的情况善导,体现学生会学,并使学生学会科学的学习方法,提高学习质量,强化学习兴趣,不断发展和完善自己。
教学媒体设计:
1.自制多媒体课件,主要是与课题相关的练习(以“小灵通”、摘取“智慧果”的形式激发兴趣,并配备音乐调节情绪,同时利用powerpoint制作板书设计加大课堂密度)。
2. 实物投影仪;学生准备2厘米和3厘米的小棒各2捆。
教学过程,设计及分析:
一、创设故事情景
教授将手指蘸入煤油和蜜糖的杯子里,用嘴尝得津津有味,但学生跟着做却无一不上当,因为教授伸进的是食指,吸的是中指,以此说明观察的重要性,告诫学生注意下面的操作要认真观察,这其实也是一种思维品质。
二、导入
1.用2厘米和3厘米的小棒各两根,围成一些图形,说一说你用哪些简便的方法算出小棒的总长度,从中发现什么。
学生:(3+2)×2=3×2+2×2
师:你们是怎样发现的?
学生:①通过计算,知道结果是一样的;②无论怎样摆,都是4根小棒,所以总长度是不变的。
(通过学生的摆和说,引导他们向乘法分配率的表达形式逼近)
2.用2厘米和3厘米的小棒各3根,进行类似上面的操作。
学生:这样摆比较有规律,很容易看出小棒的总长度,并且可以知道(3+2)×3=3×3+2×3)。
(让学生把有规律的摆法投影出来)
3.用2厘米和3厘米的小棒各4根,仿照上面再操作。
要求:在学生摆拢以后,以小组为单位进行参观和评价。让学生把有规律的做法进行实物投影,并介绍想法和发现。
学生:
3×4+2×4=(3+2)×4 (8+2)×2=8×2+2×2
7×2+3×2=(7+3)×2 (3+2)×4=3×4+2×4
(6+4)×2=6×2+4×2
分析:通过参观,知道有各种各样的摆法;通过评价,知道我们能创造数学,
发现规律,能灵活地运用知识解决问题,并进一步向乘法分配率逼近。
4.猜想:你能说出类似的例子吗?
(学生自由说,教师把有代表性的写在黑板上。)
如:(12+72)×8=12×8+72×8 25×84+75×84=(25+75)×84
…… …… …… …… …… …… …… …… ……
5.小组讨论。
(1) 根据以上算式的特征进行讨论,讨论后以小组的形式发表见解;
(2) 师生共同归纳各种见解:两个数的和同一个数相乘,等于把两个加数分别同这个数相乘,再把两个积加起来,结果不变。
教师:这就是乘法分配率。
板书课题:乘法分配率。
分析:综观传统的教学方法,教师还是牵着学生走,所以乘法分配率是强加给学生的,故学生就容易出错,更谈不上灵活运用了。根据学生的年龄特点和心理特点,教学应该从直观思维入手,而以抽象思维结束,因此,我就采用了“操作──探究──发现”的教学模式进行教学了。
三、新授
1.自学书本;
2.质疑,提出新见解;
3.师生共同解决问题。(充分发挥学生互助作用,以点带动全班的学习。)
4.教师:用公式怎样表示乘法分配率?谈谈你的看法。
(要求学生正确读出公式,引出乘法分配率可以进行简便计算。)
5.形成性练习:用简便方法计算下面各题。
35×37+65×37 102×45 38×99+38
要求:学生想办法,学生说思路,学生评,学生互助并加以改正。
四、小结
(学生以谈体会的形式进行,包括方法、感觉、情感和态度方面)
五、拓展性练习
计算下面各题:12×25 63×25-59×25 38×101-38
说明:这些题目学生是可以用多种方法计算的,目的是训练发散性思维,提高灵活解决问题的能力。在学法上充分发挥“兵”帮“兵”的指导作用。
六、反馈生活中的数学
师:这节课我们学习了乘法分配率,在日常生活中我们也经常运用乘法分配率解决一些问题,你能举出例子吗?
(同位互说,或者小组商量,再发言。)
七、布置作业
1.基础题:第66页第4、7题。
2.思考题:第66页插图。
四年级的数学教案篇5
教学内容来源:
小学四年级数学(下册)第四单元《小数的意义和性质》
教学主题:
?小数的意义》
课时:
第一课时
授课对象:
四年级学生
学习目标:
1.通过结合生活经验和实际测量活动了解小数的产生,体会小数产生的必要性。经历抽象、推理等活动明确一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……
2.借助熟悉的十进制关系的现实原型多角度理解小数与分数的关系,通过自学,理解计数单位0.1、0.01、0.001。通过数数的活动,知道相邻两个计数单位间的进率是10。
教学重点:
理解一位、两位、三位小数的意义,知道相邻的两个计数单位间的进率是10。
教学难点:
理解一位、两位、三位小数的意义。
教学准备:
米尺、课件。
教学过程
教学环节学生的学教师的教评价要点
环节一复习导入,情境感知教师利用米尺和书本的导图,深刻体会小数的必要性;量一量数学课本的长度,小组交流汇报表示方法。教师引导学生观看导图,通过分享生活中用到数的例子,引出小数,感悟小数产生的必要性。引导学生小组合作,用米尺测量数学课本的长度,再交流汇报表示方法,直观感知小数的必要性。进而引出今天的主题“小数的意义”。通过说一说,想一想,量一量,会发现小数应用的广泛性,进一步理解和感受小数产生的必要性。
环节二借助直观,迁移推理学生思考并归纳总结小数的表示方法,理解并归纳出一位小数的意义。小组合作,独立探究两位小数和三位小数的表示方法,理解并归纳出两位小数和三位小数的意义。教师借用米尺,直观描述:“把一米的尺子平均分成10份,每份是1dm,用米作单位,用分数表示十分之一米,也可以用0.1m来表示”,引导学生思考说出用分数和小数表示3dm和7dm;引导学生观察并归纳总结,描述自己的发现,体会抽象的数学思想方法,理解一位小数的意义。引导学生借助直观迁移,通过小组合作交流,独立探究的方法理解两位小数和三位小数的`具体意义。会理解并归纳出一位小数的意义,会探究出两位小数和三位小数的意义,体会抽象和推理的方法,达成目标1。
环节三自主探究,获得新知学生自学课本,交流汇报自己的收获,说一说小数的计数单位及自己对相邻两个计数单位间的进率的理解。提问:“默读课本,看看还有什么新的发现?”引导学生自学课本,了解小数的计数单位和相邻两个计数单位间的进率。会说出小数的计数单位是0.1、0.01、0.001及相邻两个计数单位间的进率是10,达成目标2。
环节四巩固新知,学以致用学生独立解决“找朋友”,动动手“写一写”,集体交流“说一说”。呈现“夯实基础”,“培优提升”两个层次的习题,引导学生找一找,写一写,说一说,巩固新知。会独立解决习题,达成目标1,2。
环节五回顾反思,归纳小结学生尝试总结。教师引导学生自主归纳:“1.通过今天的学习,你有哪些收获?2.你是通过什么方法获得的?”教师适时补充。至少能说出一方面的收获。会说出小数的意义及运用抽象和推理的数学思想方法。
课后反思:
本节课通过创设生活情境,帮助学生体会了小数产生的必要性,激发了学生的兴趣。
通过课中学生说一说,想一想,量一量,会发现小数应用的广泛性,进一步理解和感受小数产生的必要性。学生的积极性不高,今后设计时应该站在学生的角度上,多设计学生喜爱的教学形式。不过整个学习过程层层递进,学生通过想一想、测一测、数一数、说一说等多种活动进行观察、思考,逐步学习到小数的意义。这样的教学不仅符合学生的认知规律,而且渗透了数学思想方法,既符合学生的认知规律,又有利于增加学生的实际认知,让学生从自己的身边发现数学知识,进一步培养学生的能力,理解小数的意义。
教学过程应该是以学生为主体的过程,我今后会多让学生自己去发现、探讨、解决问题,他们身上有很大的潜力有待挖掘。作为教师,我们要相信自己的学生,他们可以学的更好。
会计实习心得体会最新模板相关文章: